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Abstract. We present an exact solution for the master equation for a previously studied 
urn model and use this example as a basis for formulating a general approach to metastabil- 
ity. The emphasis is on dynamics (rather than analyticity) and we also obtain a cutoff 
partition function that maps smoothly to the usual partition function on passing to the 
stable state. 

The formal problem of metastability in statistical mechanics is due to the competition 
between two numbers, each of which is ordinarily idealised to be infinite. The large 
number of particles in macroscopic systems motivates the thermodynamic limit needed 
for breakdown of analyticity in phase transitions. On the other hand, the long lifetime 
against homogeneous nucleation in many metastable systems means that there is a 
reproducible state in which critical droplets do  not form on any practical timescale 
even if the volume is many times the size of a galaxy. 

In this paper we return to a previously studied urn model [ l ]  in which dynamic 
and analytic features were both studied and we describe progress that has now been 
made on its dynamical aspects, in particular an exact solution for a stationary constant- 
current state. Various ways of looking at this exact solution are considered, its salient 
features generalised, and it is suggested that this framework might play a role in the 
general definition of metastability. We also comment on the relation of our work to 
a recent discussion of ‘bottomless action’ potentials [2]. 

The urn model can be thought of as a model of a cluster or droplet which grows 
or shrinks one particle at a time. (It can also be thought of as a random walk on the 
non-negative integers or as a birth and death process.) A cluster of size n is assigned 
energy E,, and individual particles have chemical potential ,U. The Boltzmann factor 
for an n-particle cluster is thus 

In [ 13 the choice E, = log n was considered, while for some droplet models E, = 
an“”’d ( a  corresponding to surface tension) would be appropriate. Our results in 
this paper, including the exact solution, do  not depend on these details but relate 
mainly to the convergence properties of sums of w, and l/w,. We define G, by 

and the partition function by 

w, = exp(-PE, + Ppn). (1) 

w, = exp(-G,) (2) 

X 

Z =  exp(-G,). 
n = O  

(3) 
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In [ 13 log 2 was observed to be analytic for Re p < 0. The function was then continued 
to Re p > 0 and the relevance to metastability studied. In the present paper analyticity 
plays only a small role and  indeed we believe it would be of interest to remedy that 
situation. 

The dynamics for the urn or cluster are stochastic dynamics. Let X ,  be a random 
variable whose value at  time t is the number of balls in the urn or the size of a cluster. 
The transition probabilities are 

( p ) n m  =Prim = prob(X,+l = mIX, = n )  (4) 

and are taken to be fixed in time. The matrix P is stochastic, i.e. Zmpnm = 1 .  The 
density is 

( p ( t ) ) n  = p n ( t )  = prob(Xt = n )  ( 5 )  

Pn(t+l )=CPm(t)Pmn or p ( t + 1 ) = p ( t ) P. (6)  

and satisfies the master equation 

m 

The transition probabilities are assumed to satisfy detailed balance 

W n P n m  = W m  P m n  ( 7 )  
which is enough to guarantee that p n  = w,/Z is a formal invariant solution of (6) .  The 
dynamics therefore give the correct equilibrium distribution when equilibrium is 
possible. For the P we study, if Z is not finite, 1 is no  longer in the spectrum of P 
and the largest eigenvalue will then be smaller than 1.  (In some cases, infinite Z may 
still allow 1 to be in the continuum spectrum of P, but we d o  not consider this possibility 
for the moment.) 

There is considerable leeway in the choice of {prim} such that it be consistent with 
(7). We use 

prim = a ( w m /  w,,)”~ = a exp [;( G, - G,)] I n - m l = l  

P n m  = 0 I n - m l > l  

Po0 = 1 -Pol 

n z - 1 .  

For appropriate {w,} there exists positive a so that pnn > 0 for all n ({IGn+l - G,I} 
should be uniformly bounded). The square root of w will make frequent appearances 
and  we define U, = (w,)”*. We further define U = diag( uo, u I ,  . . . ) and 

where b o = ( w , / w o ) ” 2 ,  b n = ( w n + l / w n ) ” 2 + ( w , ~ I / w n ) ~ ’ 2 ,  n z - 1 .  (uo ,  U,, . . . )  is a formal 
eigenvector of B with eigenvalue 0 and corresponds to the formal invariant left 
eigenvector w , / Z  of P. Now, however, the criterion for being in the point spectrum 
is square integrability. Generally for the Hermitian B the natural environment is L1, 
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rather than L , ,  as it is for P. We consider situations where w, diverges sufficiently 
rapidly that 0 is not in the spectrum of B at all, and  we seek the lowest eigenvalue, 
designated p g =  ( 1  -e-')/a. In  [ l ]  a bound of order pP+' (as p + O )  was found and 
numerical evidence presented for the bound being attained. The importance of this 
eigenvalue is that it governs the long time exponential decay of the system. This can 
be seen from the spectral decomposition of B and by recalling the definition of B (9) 
in terms of P. 

In this paper we shift the question slightly so as to find an  exact answer for the 
eigenvalue and  eigenfunction. We also use the exact answer to get a perturbation 
theory value of p,: 

Consider 

fn = u n s n  

with 
3c 

s, = (wlw,+l)-1/2. 
, = n  

For n 5 1 we have 

(Bf)n = - f n - l + [ ( W n + l / w ,  

= 0. 

However 

(Bf)o= ( w , / w o ) ' ~ 2 f o - f l  = 

There are two ways to rephrase the question so that (10) becomes its exact answer. 
Let SB be the matrix whose only non-zero element is (SB), ,  = - l /So .  Then as before, 
for n 5 1 ,  ( ( B  + S B ) f ) ,  = 0. Now however 

(( B + 8B)f)O = 1 + (SB),,f" = 0. 

Therefore f is an exact eigenvector of B + 6B with eigenvalue 0. An estimate of p, 
follows by treating -SB as a perturbation of B + SB so that 

Two interesting quantities make their appearance in (13).  Define 
X z, = w,s'n/s;. 

n =o 

This will later be seen to serve as a cutoff partition function in the metastable regime 
and for the situations considered in [ 1 1  (and  for p 2 2) is continuous at p = 0. On the 
other hand, So will generally be divergent at the transition, and for the urn model 

This gives p, a p dependence of p P f l  (for p > 2),  in agreement with [ l ] .  

solution to 
Another and  perhaps more fruitful way to look at  f is as a way to get a stationary 

d t + l ) = d t ) P + Q  (16) 
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with Q a source term. From our calculations we know that (Uf)+ will be a time- 
independent solution of (16) if Q possesses a zero component only (thus Q =  
( qo, 0, . . . )), but its magnitude will depend on appropriate normalisation of 1: Let 
f’= Cf with C a normalisation constant. C will be fixed by requiring that Uf’ go over 
to w , / Z  in passing from the metastable to the stable state. We shall later argue for 
Z, being the appropriate replacement for Z. Assuming this to be the case, the relation 

W J Z C  = ( Uf’)n = cwnso 
implies 

With this C, the vector [ =  Uf’ is a suitably normalised stationary solution of (16). 
Substituting, we have 

Q = [ ~ P - ~ + = C a ( l , O , O  ) . . .  ) *  

5 is therefore a steady state probability density, appropriately normalised for small n, 
for a case where there is a steady release of particles at the origin. This is a n  alternative 
view of metastability in which one does not watch for decay (nor try to define what 
has decayed and what has not) but rather asks at  what rate must new systems be 
introduced to keep the overall distribution constant. It is an  approach that has been 
taken in previous studies of metastability in which dynamics are emphasised; see, for 
example, the discussion of Landauer and Swenson’s and Langer’s work in [3, ch 61. 
With this interpretation the quantity Ca is identified with the decay rate y and using 
(17) we have 

(18) 

with Z, given by (14). This coincides with the perturbation results (13). 
One can turn things around and  take (16) as the defining equation for both stable 

and unstable regimes. The usual situation is recovered in the stable regime precisely 
because y vanishes (or So+co) as one goes to the stable side. Thus when X w, exists, 
So does not exist and we have an invariant state. On the other hand, when So exists, 
X w, does not and  the constant current solution is obtained. Whether or not the 
quantity X:=:=, 5, exists depends on whether or not the escape time to infinity is finite. 
In the 44 potential of [ 2 ]  that time is finite: in the urn model of [ I ]  it is not. Moreover, 
even when C 6, <CO, its moments, such as X n2&, may be infinite. This would seem 
to present a problem of interpretation but in fact it is not (5,) that will be suggested 
as the candidate for the metastable state. (As usual, ‘state’ means the probability 
distribution over configurations.) 

In looking at the magnetisation of what was termed the metastable state in a 
stochastic dynamics for the k i n g  model, McCraw and Schulman [4] took systems that 
had not ‘decayed’ at some fixed T and averaged the magnetisation over the interval 
[ T/2, TI. (Systems that had decayed were used to compute lifetimes.) A system was 
considered to have decayed when its magnetisation fell below a predetermined value, 
macroscopically distant from both the stable value and  the value about which it hovered 
prior to decay. (Zero magnetisation could be taken here to avoid the impression of 
circularity.) In effect, the definition of the metastable state in [4] involved not only 
the probability that the system had a given configuration at some t ,  but also a 
conditioning that required that at  a later time T it had not decayed. 

y = Ca = a(soz,)-’ 
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For the definition that we propose we use a sharper version, suggested by Aizenman 
and Newman [5], of the above conditioning. Let O(n; N,  T )  be the probability that 
the urn has n balls at T given that it had 0 balls at 0 and that at no time in the interval 
0 to 2 T  did it contain more than N balls (note the 2 in the condition). Next let T + E  
and finally N + 00. The resulting en is proposed as the metastable state. Thus 

e( n ;  N, T )  = prob(XT = n / X ,  s N for O s  t s 2 T  and X ,  = 0) 

- prob( XT = n and X, s N for 0 s t s 2 TIXo = 0) - 
p r o b ( X , s  N f o r O s  t s 2 T I X 0 = 0 )  

where we have rewritten the conditional probability. Now break the interval in half 
and use the fact that once the urn has n balls (at T )  the fact that X I  s N for t < T is 
irrelevant for t >  T by the Markov property. Therefore 

prOb(XT = n and x, s N for 0 S t s TIXo = 0) 

Each term in each product in the numerator of (19) represents a T step transition 
probability (from 0 to n and from n to j) under a modified dynamics in which exit 
from [0, NI is not allowed. Transition probabilities for a single step under this dynamics 
are given by PN, the truncation of P to its first N +  1 rows and columns. The 
denominator represents the same evolution for a period 2T. Therefore 

The matrix PN is not stochastic and its largest eigenvalue is less than 1 .  Call this 
largest eigenvalue exp( - y t )  and note that it is related to the lowest eigenvalue of the 
corresponding truncated B (called B” and equal to U(1-  P ” ) U - ’ / a )  by 

(21) 
The eigenvalues and eigenvectors of B” are denoted ,L?; = [ l  -exp(-y;)]/a andfkN, 
respectively. Using the spectral decomposition of B N ,  (20) becomes 

N exp( - y o  ) = 1 - ap;. 

For T-,  cc and appropriate { w,}  the k = j  = 0 term in (22) dominates. Thus 

e ( n ;  N,  E) =fnON*f;”. (23) 
If we further assume appropriate spectral properties for E (=  lim, B ” )  we obtain 

0, = lim lim B ( n ;  N,  T )  
N - x  T - x  

= f no*.fnO (24) 
with fo the ground-state eigenvector of B. This is basically the same as the probability 
distribution proposed in [2]. 

f” is not equal to our previously defined f; nor is yo (= lim+= 7:) the same as 
y, but they are close. Formally this is easy to see. As noted above f satisfies 

(Bf)n = 60,. (25) 
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Since 0 is not in the B spectrum, we invert ( 2 5 )  to obtain 
s 

(26) 

If we assume that close to the transition Po+ 0 and that the sum in (26) is dominated 
by the k = 0 term we find 

1 n o* 

I k k *  f= c P i f f o .  
k = O  

(27)  f = P i f f o .  
It follows that f and f n  are proportional and  taking into account the normalisation of 
f we have 

f0=fCC Ifn12)-"2 

This yields 

Based on (29) we view w , ( S , / S 0 ) *  
denominator 

2, =c w"(s,/so)2 

(29) 

as a modified Boltzmann factor and  the 

which provides normalisation, as a partition function. For the urn model & / S o  remains 
close to unity for n<< 1 / p  and for n >> l / p  drops off like l/w,, ,  as we will now show, 
using the method of steepest descents on the integral (15) with appropriately modified 
limits of integration. 

In particular, for the urn model we approximate S, by 

I ( x )  = lx+= exp(P log 5- Pp5) d 5  for p > 0. 

The maximum of the argument of the exponent is at &, = l /p  and its first and second 
derivatives are, respectively, P (  l / ( -p )  
expressions 

and  We then obtain the asymptotic 

for x<< l / p  

for x >> 1/p .  

(Note that for small x, I ( x )  is nearly independent of x.) It follows that 

f, = u,s, - u , l ( x )  - cu, for n = x<< 1 / p  

and 

fn C ' /  w n  for n = x >> l l p .  

The state 8, - f; is thus indistinguishable from the pseudo-equilibrium state w, for 
n << 1 /p  ( p  small) and for n >> l / p ,  it decreases like (w,)-'. This is another indication 
of the suitability of e,, as a metastable state. The near constancy of S,, followed by 
its rapid dropoff, will generally be true of droplet models. 

0, is thus our candidate for the metastable state and  the fact that Sn/So- 1 for n 
less than the droplet size (=  1/p) reflects the general prejudice that the metastable 
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state ought to resemble a stable state if a droplet has not formed. What has always 
been difficult in attempts to make this idea precise has been the problem of where to 
draw the line. Various criteria for the acceptance of some system configurations and 
the exclusion of others have been proposed [ 6 ]  but have generally involved elements 
of arbitrariness and discontinuity as a function of external field (corresponding to p 
in the urn problem). The factor ( S , / S , ) ’ ,  on the other hand, provides diminishing 
significance to states that violate the droplet condition but in a smooth fashion and in 
a way that automatically accommodates increasing droplet size as the phase transition 
is approached from the metastable side. 

Several remarks are in order on the possibility that this example may have broader 
significance. 

(i)  At this stage the role of analyticity is not evident to us. In (18) we have an 
expression for y, the decay rate, but do not see a simple relation of this to the analytic 
continuation of the free energy, an expression for which was given in [ l ]  (based on 
[7]) .  Supposedly y is related to Im(free energy). 

(ii) The two-time conditioning does not seem adequate to pin down the metastable 
state in the Ising model [5]; apparently one’s intuition about what is likely and unlikely 
is not always a guide to the infinite volume limit. This suggests that the best possible 
results for metastability may prove to be the asymptotics as one approaches the 
transition. Hints of this already occur in considerations [8, especially § 51 of the 
putative formula y = K Imf: However, the enormous volumes that would be needed 
before the aforementioned intuitions are violated suggest that the domain of applicabil- 
i ty of the asymptotic expressions should be large, at least away from critical points. 

(iii) Theoretical description of spinodal decomposition is problematic and 
approaches in which singularities of the free energy are sought deep in the metastable 
region (inspired perhaps by the van der Waals gas [see 9, lo]) have not proved useful, 
probably representing too great an extrapolation from the stable regime. 

With emphasis on the dynamics one looks to properties of P or B and here we 
wish to suggest that in some instances the onset of spinodal decomposition corresponds 
to the disappearance of the point spectrum at the bottom of the spectrum of B. The 
decay would no longer be dominated by a single exponential and the ground-state 
eigenvector of B, which gave a state with time-independent properties up until its 
decay, would no longer exist. It is likely that this has something to do  with properties 
of critical droplets but our present conjecture has the advantage of not relying on a 
specific picture of nucleation or decay. 

(iv) Although we anticipate problems in going to the infinite degree of freedom 
Ising or field theoretical case, the generalisation of our results from one to n dimensions, 
1 < n <CO, is straightforward. In the continuum case, for example, one looks to the 
Fokker-Planck equation with a source 

(30) 
Q here is the rate y times a delta function and one would set grad p + p grad G equal 
to a divergence-free vector in order to obtain the constant current solution. Alterna- 
tively, the transformation f = p exp( G/2)  would yield a Schrodinger-like equation 
for J: 

A solution to the one-dimensional version (the Schrodinger analogue) of (30) that 
corresponds to fn of (10) is 

ap/dt = div(grad p + p grad G)  + 0. 

x 

f ( x ) = e x p ( - G ( x ) / 2 )  dy exp(G(y)) .  (31) 
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Solutions of this sort have generally been rejected as stationary states [ 11, p 981 because 
the corresponding density p =f exp(-G/2) is not normalised. (Practically speaking, 
however, the solution (31) is used both in [3] and [ l l ]  for the calculation of decay 
rates, much as we have done.) The suggestion considered in this paper and in [ 2 ]  is 
that it is f ( x ) ’  that should be considered the metastable probability distribution, and 
this is normalisable. The n-dimensional generalisation of this idea is obvious, although, 
as indicated above, n = CO may introduce new problems. 

(v)  The dynamical rule (8) is not the only one for which an exact solution is 
available. For example, one can also satisfy detailed balance with the choice p n  n - l  = 
~ W , - ~ / W , ,  p n  = a ,  with other definitions in (8) unchanged. For the steady state 
solution one replaces S,  (of 10) by the even simpler ET=, (w1)-’. These solutions may 
be of interest in specific problems and in multidimensional situations one’s guesswork 
may be aided by considering more easily found continuum solutions (of (30)). 

(vi) We reconsider the case p CO. We know that w , / Z  is the normalised stable 
state and U ,  a square summable eigenstate of B of eigenvalue 0. We want to construct 
a Green function for B with a source at 0 and a sink at a particular point n. Thus we 
seek a vector U, with 

= ‘ 0 . j  - T a n , /  (32) 
where 7 is some positive constant. Define 

and u o = O .  Then to satisfy (32), including continuity at n, we must have 

u k  = u k ( 7 u n u n  - u k ) + c ’ u k  k s n  

u k  = u k ( m u ,  - I ) u k + c ’ u k  k s n  

where c‘ is aqy constant. The condition that this state is square summable is that 
r = 1/ U,. In that case, we take c’ so that u k  is orthogonal to the fundamental state U k ,  

namely 

In summary, the Green function with source at 0 and sink at n orthogonal to the 
fundamental state satisfies 
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